Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Voltage and light bias dependent quantum efficiency measurements of GaInP/GaInAs/Ge triple junction devices

Identifieur interne : 000233 ( Main/Repository ); précédent : 000232; suivant : 000234

Voltage and light bias dependent quantum efficiency measurements of GaInP/GaInAs/Ge triple junction devices

Auteurs : RBID : Pascal:13-0239241

Descripteurs français

English descriptors

Abstract

III-V monolithic multi-junction solar cells reach efficiencies exceeding 40% and have applications in space and terrestrial concentrator systems. Due to the series connection of the junctions, the external quantum efficiency (EQE) measurement of multi-junction cells presents additional challenges compared to EQE measurement procedures for single-junction devices. Previous work has shown that optimization of bias light and voltage is necessary to minimize measurement artifacts that usually appear during the measurement of the Germanium (Ge) junctions with low shunt resistance. This paper aims to contribute to the improvement of multi-junction device characterization by reporting the effects of low and high shunt resistance junctions on EQE for various voltage and light bias conditions. Voltage and light bias are shown to have different effects on junctions with different shunt resistance. Therefore further investigation of junctions with different shunt resistance under variable light and voltage conditions is needed to provide better understanding of the precise test conditions for EQE measurements. Our results showed that in the high shunt resistance junctions the bias voltage technique is not necessary. However, in the case of junctions with low shunt resistance, a combination of voltage and light bias is required during EQE measurements. Furthermore, the luminescence coupling effect was observed during EQE measurements at very intense light bias conditions confirming previous indications. Finally, an alternative approach for measuring the EQE is proposed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0239241

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Voltage and light bias dependent quantum efficiency measurements of GaInP/GaInAs/Ge triple junction devices</title>
<author>
<name sortKey="Paraskeva, Vasiliki" uniqKey="Paraskeva V">Vasiliki Paraskeva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Technology, ECE, University of Cyprus, 75 Kallipoleos Street</s1>
<s2>Nicosia 1678</s2>
<s3>CYP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Chypre (pays)</country>
<wicri:noRegion>Nicosia 1678</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hadjipanayi, Maria" uniqKey="Hadjipanayi M">Maria Hadjipanayi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Technology, ECE, University of Cyprus, 75 Kallipoleos Street</s1>
<s2>Nicosia 1678</s2>
<s3>CYP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Chypre (pays)</country>
<wicri:noRegion>Nicosia 1678</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Norton, Matthew" uniqKey="Norton M">Matthew Norton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>European Commission, DG JRC, Institute for Energy and Transport, Renewable Energy Unit, TP450</s1>
<s2>21027 Ispra (VA)</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>21027 Ispra (VA)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pravettoni, Mauro" uniqKey="Pravettoni M">Mauro Pravettoni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Applied Sustainability to the Build Environment, University of Applied Sciences and Arts of Southern Switzerland</s1>
<s2>Canobbio 6952</s2>
<s3>CHE</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>Canobbio 6952</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Georghiou, George E" uniqKey="Georghiou G">George E. Georghiou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Technology, ECE, University of Cyprus, 75 Kallipoleos Street</s1>
<s2>Nicosia 1678</s2>
<s3>CYP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Chypre (pays)</country>
<wicri:noRegion>Nicosia 1678</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0239241</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0239241 INIST</idno>
<idno type="RBID">Pascal:13-0239241</idno>
<idno type="wicri:Area/Main/Corpus">000A63</idno>
<idno type="wicri:Area/Main/Repository">000233</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bias voltage</term>
<term>Comparative study</term>
<term>Gallium phosphide</term>
<term>Germanium</term>
<term>III-V compound</term>
<term>Indium phosphide</term>
<term>Luminescence</term>
<term>Measurement method</term>
<term>Multijunction solar cells</term>
<term>Optimization</term>
<term>Performance evaluation</term>
<term>Quantum yield</term>
<term>Series connection</term>
<term>Shunt</term>
<term>Ternary compound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rendement quantique</term>
<term>Cellule solaire multijonction</term>
<term>Evaluation performance</term>
<term>Montage série</term>
<term>Etude comparative</term>
<term>Méthode mesure</term>
<term>Optimisation</term>
<term>Tension polarisation</term>
<term>Shunt</term>
<term>Luminescence</term>
<term>Composé ternaire</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Germanium</term>
<term>Composé III-V</term>
<term>GaInP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">III-V monolithic multi-junction solar cells reach efficiencies exceeding 40% and have applications in space and terrestrial concentrator systems. Due to the series connection of the junctions, the external quantum efficiency (EQE) measurement of multi-junction cells presents additional challenges compared to EQE measurement procedures for single-junction devices. Previous work has shown that optimization of bias light and voltage is necessary to minimize measurement artifacts that usually appear during the measurement of the Germanium (Ge) junctions with low shunt resistance. This paper aims to contribute to the improvement of multi-junction device characterization by reporting the effects of low and high shunt resistance junctions on EQE for various voltage and light bias conditions. Voltage and light bias are shown to have different effects on junctions with different shunt resistance. Therefore further investigation of junctions with different shunt resistance under variable light and voltage conditions is needed to provide better understanding of the precise test conditions for EQE measurements. Our results showed that in the high shunt resistance junctions the bias voltage technique is not necessary. However, in the case of junctions with low shunt resistance, a combination of voltage and light bias is required during EQE measurements. Furthermore, the luminescence coupling effect was observed during EQE measurements at very intense light bias conditions confirming previous indications. Finally, an alternative approach for measuring the EQE is proposed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Voltage and light bias dependent quantum efficiency measurements of GaInP/GaInAs/Ge triple junction devices</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PARASKEVA (Vasiliki)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HADJIPANAYI (Maria)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NORTON (Matthew)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PRAVETTONI (Mauro)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GEORGHIOU (George E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Photovoltaic Technology, ECE, University of Cyprus, 75 Kallipoleos Street</s1>
<s2>Nicosia 1678</s2>
<s3>CYP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>European Commission, DG JRC, Institute for Energy and Transport, Renewable Energy Unit, TP450</s1>
<s2>21027 Ispra (VA)</s2>
<s3>ITA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Applied Sustainability to the Build Environment, University of Applied Sciences and Arts of Southern Switzerland</s1>
<s2>Canobbio 6952</s2>
<s3>CHE</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>55-60</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000503882310080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0239241</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>III-V monolithic multi-junction solar cells reach efficiencies exceeding 40% and have applications in space and terrestrial concentrator systems. Due to the series connection of the junctions, the external quantum efficiency (EQE) measurement of multi-junction cells presents additional challenges compared to EQE measurement procedures for single-junction devices. Previous work has shown that optimization of bias light and voltage is necessary to minimize measurement artifacts that usually appear during the measurement of the Germanium (Ge) junctions with low shunt resistance. This paper aims to contribute to the improvement of multi-junction device characterization by reporting the effects of low and high shunt resistance junctions on EQE for various voltage and light bias conditions. Voltage and light bias are shown to have different effects on junctions with different shunt resistance. Therefore further investigation of junctions with different shunt resistance under variable light and voltage conditions is needed to provide better understanding of the precise test conditions for EQE measurements. Our results showed that in the high shunt resistance junctions the bias voltage technique is not necessary. However, in the case of junctions with low shunt resistance, a combination of voltage and light bias is required during EQE measurements. Furthermore, the luminescence coupling effect was observed during EQE measurements at very intense light bias conditions confirming previous indications. Finally, an alternative approach for measuring the EQE is proposed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire multijonction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Multijunction solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Montage série</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Series connection</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Montaje serie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode mesure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Measurement method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método medida</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Tension polarisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Bias voltage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Voltage polarización</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Shunt</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Shunt</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Shunt</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Luminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Luminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Luminiscencia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>GaInP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>224</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000233 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000233 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0239241
   |texte=   Voltage and light bias dependent quantum efficiency measurements of GaInP/GaInAs/Ge triple junction devices
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024